

UPMC | CHILDREN'S HOSPITAL OF PITTSBURGH

A long term perspective on Liver Transplant Decision Making in Urea Cycle Disorders George Mazariegos @CHPTransplant April 6, 2024

ABOUT UCD

Medical Advisory Board

NO OTHER RELEVANT DISCLOSURES

Strategies affecting protein level and function

- Substrate reduction
- Alternative substrates
- Toxin removal
- Cofactor supplementation
- Alternative pathways for metabolism
- Replace product
- Replace enzyme
 - Transplant
 - Gene therapy
 - mRNA therapy
 - Enzyme replacement

Courtesy, Dr Jerry Vockley

Metabolic disease: Connecting Surgeons/Physicians/Patients

UPMC | CHILDREN'S

Stormie's Story

- Combined heart liver transplant, February 14, 1984 for familial hypercholesterolemia
- *"If the fundamental defect was exclusively or primarily in the liver, it was conceptually possible to correct the problem by replacing the liver"*

» – Thomas Starzl, The Puzzle People

The intersection of transplant and genetics

• *"armed with information from these dual"* lines of inquiry (pathology and biochemical genetics), more than a half dozen such inborn errors were "cured" metabolically between 1969 and 1983 by liver transplantation in Denver and Pittsburgh" - The Puzzle People

How much of a cure is achieved with transplant?

Metabolic diagnoses for which liver transplant has been reported.

	Conditions with liver injury		
	Intrahepatic	Extrahepatic	Outcome
Disease specific outcomes and therapies	Alpha-1-antitrypsin deficiency (SERPINA1) • Tyrosinemia type I • GSD Type IV (GBE 1 gene) • BSEP deficiency • MDR-3 deficiency • Primary bile acid synthesis disorders • Hepatic porphyrias o Acute intermittent porphyria • Glycogen storage disease type Ia • Hereditary fructose intolerance • Indian childbood cirrbosis	 Wilson disease Cystic fibrosis FIC-1 deficiency Glycogen storage disease types lb, III and IV Non-alcoholic steatohepatitis Gaucher disease Niemann-Pick disease Cholesterol ester storage disease Mitochondrial cytopathies Cerebrotendinous xanthomatosis Citrin deficiency Erythropoietic porphyria 	docume Disease therapie many of conditio
	Conditions without liver injury		MSUD –r
No Disease recurrence	Intrahepatic Crigler-Najjar syndrome type 1 Primary hyperoxaluria Urea cycle disorders Fanilial hypercholesterolemia Fatty acid oxidation defects Coagulation defects O Hemophilia A O Factors V and VII deficiency O Proteins C and S deficiencies Factor H deficiency Afibrinogenemia Amyloidosis type 1	Extrahepatic • Citrulinemia • Cystinosis • Branched amino acids disorders (organic acidemias) o Propionic acidemia o Methylmalonic acidemia o Mevalonic acidemia o Maple syrup urine disease	normal d MMA, PA metaboli improved protein in
		-	

Mazariegos et al , 2014, Molecular Genetics Metabolism,

Outcomes most well documented for Wilson Disease and CF. Other therapies now utilized for many of these systemic conditions

MSUD –phenotypic cure on normal diet MMA, PA- improved metabolic status with improved but not normal protein intake

UPMC | CHILDREN'S

Objectives

- Decision making in pediatric metabolic disease with focus on urea cycle disorders
- Perspectives on how we can improve in the long term
 - Location, location, location
 - Learning networks and working on long term care, transition, immunosuppression
 - Supplementation after transplant

LONG TERM OUTCOMES IN TRANSPLANTATION TODAY

Number of pediatric recipients who are alive with graft function after organ transplants by year and organ type (SRTR, 2023)

₩₽

■ Kidney ■ Liver ■ Intestine ■ Heart ■ Lung ■ Pancreas ■ Multi-organ

UPMC | CHILDREN'S HOSPITAL OF PITTSBURGH

What is the projected liver transplant outcome for children transplanted today?

Evolving indication for liver transplant for metabolic disease in US over 30 years

UPMC CHILDREN'S HOSPITAL OF PITTSBURGH

McKiernan et al Liver Transpl 2019

RISKS AND BENEFITS

Medical management

Natural history - phenotype Frequency/severity of decompensations Risks of end organ damage Quality of life/adherence over time

Mortality

Liver transplant

Availability of expertise

Surgical complications

Early mortality

Degree of metabolic correction

Life long immunosupression

Adherence

Impact of gene therapy and future therapies?

OUTCOMES: metabolic disease vs. chronic liver disease

Kayler, 2003

Arnon, 2010

Fig. I. Kaplan-Meier probability of survival after LT for metabolic vs. non-metabolic liver disease.

Liver transplant for metabolic disease by era

Pittsburgh series (n=404)

Overall Patient Survival By Decade Liver Transplant for Metabolic Disease (N=404), 1981-12/31/2023

Patient Survival Metabolic 1981-2023

Japanese Registry (n=194)

Selected results

AUTHOR/YR	UCD CASES	PT SURVIVAL (1/5 YR)	GRAFT SURVIVAL (1/5 YR)	NOTES
Arnon, 2010	114	95.2/88.7%	91.8/83.7%	Data from SPLIT
Kim et al , 2013	23	Mean 5 yr survival was 100%	5 yr graft survival was 96%	Stanford data Mean age 3.4 yr;
Mazariegos et al, 2014. 2024	14/45	80% 20 year patient survival	80% 20 year graft survival	UPMC Children's Data
Kasahara et al, 2013	51	95.9/95.9	95.9% 15 yr patient survival	Japanese LTS Registry mandatory data
Kido et al , 2021	78	98.7% 5 year survival*		Survey questionnaire
Ziogas et al, 2021	403		90.4%/85.5%	Waitlist time associated with long term cognitive delay

UPMC | CHILDREN'S HOSPITAL OF PITTSBURGH

Differences by sub groups of metabolic disease

Table 9 Demographics, procedure type, post-transplant complications, and outcome by primary diagnosis

\Rightarrow	Urea cycle defects (N = 114)	Alpha 1 antitrypsin deficiency (N = 88)	Cystic fibrosis (N = 48)	Wilson disease (N = 34)	Tyrosinemia (N = 33)	Maple syrup urine disease (N = 29)	Crigler-Najjar (N = 21)	Neonatal hemochromatosis (N = 18)	p value
Age at transplant (mean ± SBM)	4.0 (0.4)	4.7 (0.5)	12.4 (0.6)	14.2 (0.5)	3.8 (0.7)	6.4 (0.8)	7.3 (1.2)	0.3 (0.1)	<0.0001
UNOS status 1*	35 (30.7)	6 (6.8)	4 (8.3)	15 (44.1)	6 (18.2)	0 (0)	2 (9.5)	7 (38.9)	< 0.0001
Hospitalized in ICU	11 (9.6)	7 (8.0)	8 (16.7)	19 (55.9)	9 (27.3)	4 (13.8)	0 (0)	15 (83.3)	< 0.0001
On dialysis/hemofiltration	7 (6.1)	1 (1.1)	0 (0)	4 (11.8)	0 (0)	0 (0)	1 (4.8)	0 (0)	0.0468
Cadaveric whole	67 (58.8)	58 (65.9)	34 (70.8)	28 (82.4)	14 (42.4)	28 (96.6)	15 (71.4)	6 (33.3)	< 0.0001
Cadaveric split	18 (15.8)	10 (11.4)	3 (6.3)	2 (5.9)	5 (15.2)	1 (3.4)	0 (0)	2 (11.1)	
Cadaveric reduced	15 (13.2)	8 (9.1)	2 (4.2)	3 (8.8)	10 (30.3)	0 (0)	4 (19.0)	7 (38.9)	
Live donor (related and unrelated)	9 (7.9)	11 (12.5)	6 (12.5)	0 (0)	3 (9.1)	0 (0)	2 (9.5)	2 (11.1)	
Biliary complications	15 (13.2)	8 (9.1)	6 (12.5)	1 (2.9)	3 (9.1)	0 (0)	0 (0)	4 (22.2)	Not enough sample
Hepatic artery thrombosis	11 (9.6)	10 (11.4)	2 (4.2)	1 (2.9)	4 (12.1)	3 (10.3)	3 (14.3)	2 (11.1)	size to perform
Portal vein thrombosis	0 (0)	7 (8.0)	0 (0)	0 (0)	0 (0)	0 (0)	1 (4.8)	2 (11.1)	statistical test
Gastrointestinal complication	9 (7.9)	3 (3.4)	1 (2.1)	2 (5.9)	1 (3)	3 (10.3)	1 (4.8)	1 (5.6)	
CNS complications	6 (5.3)	8 (9.1)	5 (10.4)	2 (5.9)	2 (6.1)	2 (6.9)	0 (0)	0 (0)	
Patient survival, one yr	95.2%	91.9%	91.5%	96.0%	100%	100%	94.7%	88.5%	0.80
Patient survival, five yr	88.7%	89.0%	88.0%	91.4%	92.4%	NA	94.7%	88.5%	
Graft survival, one yr	91.8%	86.0%	84.8%	96.0%	93.5%	100%	95.2%	82.1%	0.50
Graft survival, five yr	83.7%	80.7%	81.2%	91.4%	85.8%	NA	95.2%	82.1%	

Arnon et al, 2010 UPMC CHILDRE

Differences by sub groups of metabolic disease: Living donor experience

Table 4. LDLT for each metabolic	disorders							
Diagnosis (n)	Wilson's disease (n = 59)	Urea cycle deficiency (n = 51)	Organic acidemia (n = 29)	Glycogen storage disease (n = 15)	Primary hyperoxaluria (n = 9)			
Family history	4 (6.8%)	17 (33.3%)	2 (6.9%)	1 (6.6%)	3 (33.3%)			
Donor age (yr)	41.7 ± 8.7 (22–68)	35.8 ± 6.8	33.6 ± 5.0	36.4 ± 9.2	39.9 ± 5.3			
ABO incompatibility	5 (8.5%)	6(11.8%)	5 (17.2%)	3 (20.0%)	1 (11.1%)			
Age at on set (yr)	11.0 ± 4.4 (6-16)	1.1 ± 1.5 (0-2)	0.6 ± 1.7 (0-6)	0.1 ± 0.3 (0-1)	1.0 ± 0.8 (0.4–2)			
Age at transplantation (yr)	11.4 ± 2.8(6-17)	3.8 ± 4.6 (0.2–16)	2.2 ± 2.8 (0.4–12)	4.9 ± 4.3 (0.8–13)	7.7 ± 6.2 (1-17)			
Indication of LTx	Chronic liver failure 42	Frequent hyperammonemia 51	Metabolic decompensation 29	Hypoglycemia 11	Renal failure 9			
	Fulminant 17	Poor QOL 30	Poor QOL 29	Chronic liver failure 3	Poor QOL 9			
				Acute liver failure 2				
Transplantation score*	17.7 ± 3.2	19.3 ± 4.11	18.6 ± 3.0	14.0 ± 2.0	13.0 ± 2.0			
Immunosuppression	Tac 66.0%, Tac+MMF 18.8%	Tac 72%, Tac+MMF20%,	Tac 86.2%, Tac+MMF3.4%,	Tac 80%, Tac+MMF 20%	Tac 77.8%, Tac+MMF 11.1%,			
	CyA 7.5%	CyA 10%	CyA 10.3%		CyA 11.1%			
Acute and chronic rejection (%)	11.9, 3.4	9.8, 0	0, 0	6.6, 0	11.1,0			
Post LTx complication								
Hepatic artery thrombosis	1	0	0	0	1			
Portal vein thrombosis	1	0	0	1	1			
Biliary	1	1	0	0	0			
Renal insufficiency	0	1	4	0	-			
Seizure	4	4	3	3	0			
Cause of death	Pneumocystis pneumonia	Hemophagocytic syndrome	Sepsis 4	Sepsis 5	Sepsis 3			
	Recurrent hepatitis C	Traffic accident		Liver failure after PV thrombus	Liver failure after HA/PV thrombus			
	De novo autoimmune hepatitis							
	Hypoxic-ischemic encephalopathy							
	(epilepticus)							
	Sepsis 2							
Patient survival								
1 yr	98.4	96.1	89.7	80.0	55.6			
5 yr	96.6	96.1	85.2	66.7	55.6			
10 yr	94.7	96.1	85.2	66.7	55.6			
15 yr	77.5	96.1	-	-	-			

00L, quality of life, LTx, liver transplantation, Tac, tacrolimus, MMF, mycophenolate mofetil, CyA, cyclosporine A, HA, hepatic artery, PV, portal vein. *See Table 2

£#£

Kasahara et al, 2014

Registry Report

Living donor liver transplantation for pediatric patients with metabolic disorders: The Japanese multicenter registry

UPMC CHILDREN'S HOSPITAL OF PITTSBURGH

Metabolic and growth s/p LTx

Genetics in Medicine (2024)

A Severe phenotype

Favorable growth outcome

Severity-adjusted evaluation of liver transplantation on health outcomes in urea cycle disorders

Roland Posset^{1,*}, Sven F. Garbade¹, Florian Gleich¹, Svenja Scharre¹, Jürgen G. Okun¹, Andrea L. Gropman², Sandesh C.S. Nagamani³, Ann-Catrin Druck¹, Friederike Epp¹, Georg F. Hoffmann¹, Stefan Kölker¹, Matthias Zielonka^{1,w}, or behalf of the Urea Cycle Disorders Consortium (UCDC) and the European registry and network for Intoxication type Metabolic Diseases (E-IMD) Consortia Study Group

UPMC | CHILDREN'S

Motor and Cognitive Outcomes

Better to transplant early

Impact on cognitive delay

- 233 children with cognitive development data at initial and post transplant follow-up.
- Post LT cognitive status deteriorated over time in 60 (25.86%) and remained stable or improved in 74.2%
- In multivariable analysis, increasing waiting time and male sex associated with increased odds of having cognitive delay at last post tx follow-up
- Every month on waiting list increased odds of cognitive delay by 10%

Three additional perspectives to help

- Dynamic, life-cycle catalysts
- Outcome measures hierarchy
- Ideal outcome metrics

JIMD Stem WILEY

Choosing between medical management and liver transplant in urea cycle disorders: A conceptual framework for parental treatment decision-making in rare disease

Maya T. Gerstein¹ ^D Anne R. Markus¹ Kan Z. Gianattasio¹ 1 Cynthia Le Mons² Janice Bartos² | David M. Stevens¹ | Nicholas Ah Mew³

Insufficient clinical evidence

J Inherit Metab Dis. 2020;43:438-458.

CHILDDEN/C

tHt

Cycle of care in children is much longer than for adults with resultant period of potential impact of care being measured in decades.

> Outcome Measures Hierarchy Porter, What is value in Health Care? NEJM 12-23-2010, 2477-2481

Toward a more wholistic view: the "Ideal outcome" metric

Table IV. The ideal SPLIT 10-year survivor of pediatric LT						
Medical variable: result reported at 10-year visit	Patient data available, n	Patients who answered "yes" to variable as phrased, n (%)	Patients missing data, n (%)			
Sustainability of allograft						
1 No retransplantation	167	147 (88%)	0			
2 No chronic rejection; confirmed diagnosis previously/presently	167	152 (91%)	0			
3 Serum ALT normal	166	148 (89%)	1 (1%)			
4 Serum TB normal	165	161 (98%)	2 (2%)			
5 Serum albumin normal	162	160 (99%)	5 (3%)			
6 Serum GGT normal	149	126 (85%)	18 (11%)			
Absence of immunosuppression-induced comorbid conditions						
7 No PTLD; previous diagnosis of tissue-confirmed PTLD	167	158 (94%)	0			
8 No renal dysfunction; cGFR <90 mL/min/1.73 m ²	118	107 (91%)	49 (29%)			
9 Acceptable linear growth; >-2 SD for healthy population	121	112 (93%)	46 (27%)			
10 No diabetes	167	165 (99%)	0			
Absence of need for additional medications						
11 No ongoing use of prednisone	167	135 (81%)	0			
12 No use of antihypertensive agent	167	146 (87%)	0			
13 No use of antiseizure medication	167	167 (100%)	0			

Vicky Ng et al : Health Status of Children Alive 10 years after <u>Pediatric Liver</u> Transplant J Pediatrics 2012: 160-820-6

UPMC | CHILDREN'S HOSPITAL OF PITTSBURGH

Objectives

- Decision making in pediatric metabolic disease with focus on urea cycle disorders
- Perspectives on how we can improve in the long term
 - Location, location, location
 - Learning networks and working on long term care, transition, immunosuppression
 - Supplementation after transplant

Received: 16 September 2022 Accepted: 6 January 2023

DOI: 10.1097/LVT.000000000000091

ORIGINAL ARTICLE

OPEN

Center use of technical variant grafts varies widely and impacts pediatric liver transplant waitlist and recipient outcomes in the United States

CHILDREN'S HOSPITAL OF PITTSBURGH

HOW DOES USE OF TECHNICAL VARIANT LIVERS AFFECT **OUTCOMES?**

- WIDE VARIATION IN PRACTICE
- NOT DEPENDENT ON CENTER • SIZE
- **DID NOT SIGNIFICANTLY CHANGE OVER TIME**
- **TECHNICAL VARIANT** DECEASED DONOR AND LIVING DONOR INDEPENDENTLY AND IN COMBINATION WERE ASSOCIATED WITH BETTER OUTCOMES

Mazariegos et al, 2023

IMPACT OF LDLT

- Recipients of Living
 Donor transplants had
 significantly increased
 survival from transplant
 compared to other graft
 types (HR 0.611, Cl (.40.92))
- **DD TV grafts** had equivalent outcomes to whole liver recipients (HR 1.066, Cl (.93-1.22))

Objectives

- Decision making in pediatric metabolic disease with focus on urea cycle disorders
- Perspectives on how we can improve in the long term
 - Location, location, location
 - Learning networks and working on long term care, transition, immunosuppression
 - Supplementation after transplant

How do learning systems meet the current health care system needs?

Learning Health Systems: Learning Faster

Figure 1 Schematic of the health care system today. [From Best Care at Lower Cost: The Path to Continu America. Committee on the Learning Health Care System in America; Institute of Medicine; Smith M, S editors. Washington (DC): National Academies Press (US); 2013 May 10. With permission].

Learn Health Sys. 2022;6:e10328. https://doi.org/10.1002/lrh2.10328

> UPMC | CHILDRE HOSPITAL OF PITTS

Peng, D, Rosenthal, D, Zafar F, et al. Collaboration and new data in ACTION: a learning health care system to improve pediatric heart failure and ventricular assist device outcomes. Translational Pediatrics, 2019 Oct; 8(4): 349–355.

Participating Centers

The Starzl Network for Excellence in Pediatric Transplantation aims to unite top children's liver transplant centers from around the world committed to:

- Improving outcomes and quality of life for each child who needs a transplant
- Creating and sharing best practices
- Solving the toughest problems in pediatric transplant

TTSBURGH

What do we need to truly optimize immunosuppression for pediatric liver transplant recipients?

- Strategies for "ensuring that the right care is provided to the right child at the right time, every time."
 - Evidence-based or expert consensus
 - Feasible/achievable for the transplant center
 - Tailored to the child pre-existing conditions, transplant, family priorities and preferences
 - Patient-centered which outcomes are most important to patients and families? How do we balance protection of the graft and the child?

Forrest CB, Margolis P, Seid M, Colletti RB. PEDSnet: how a prototype pediatric learning health system is being expanded into a national network. Health Aff (Millwood). 2014 Jul;33(7):1171-7.

JPGN

ORIGINAL ARTICLE

Hepatology

Impact of early immunosuppression on pediatric liver transplant outcomes within 1 year

Vikram K. Raghu¹ ^[5] | Xingyu Zhang² | James E. Squires¹ |

Exploring Pediatric Liver Transplant Immunosuppression for Improved Outcomes

J Ped Gastro Nutr. 2024;1–11.

UPM CHILD

Consensus Protocol Development: reducing variability – so that we're all ordering off the same menu

Courtesy, Emily Perito and Immunosuppression team

Patient-centered outcomes research projects are usually comparative effectiveness studies.

- Comparative effectiveness studies compare the outcomes (benefits + harms) of 2 or more approaches to healthcare.
- These are often trials that compare 2 or more treatments that we already use in practice.
- PCOR focuses on trial outcomes that really matter to patients, family caregivers, clinicians, or other healthcare stakeholders.

Objectives

- Decision making in pediatric metabolic disease with focus on urea cycle disorders
- Perspectives on how we can improve in the long term
 - Location, location, location
 - Learning networks and working on long term care, transition, immunosuppression
 - Supplementation after transplant

Do we need to keep giving citrulline and arginine?

Hearing from the Experts

Expert #1

- "You need Arginine or Citrulline for OTC, CPS1 and NAGS"
- You need Arginine for citrullilinemia and ASL
- Cirulline is better tolerated orally

J Inherit Metab Dis. 2024;47:220-229.

Impact of citrulline substitution on clinical outcome after liver transplantation in carbamoyl phosphate synthetase 1 and ornithine transcarbamylase deficiency

Expert # 2

In general, 100 mg/kg/day L-Citrulline divided BID is recommended post transplant for proximal disorders and arginine for distal disorders.

Molecular Genetics and Metabolism 141 (2024) 108112

Research Paper

Impact of supplementation with L-citrulline/arginine after liver transplantation in individuals with Urea Cycle Disorders

Roland Posset^{a,*}, Sven F. Garbade^a, Florian Gleich^a, Sandesh C.S. Nagamani^b, Andrea L. Gropman^c, Friederike Epp^a, Nesrine Ramdhouni^a, Ann-Catrin Druck^a, Georg F. Hoffmann^a, Stefan Kölker^a, Matthias Zielonka^{a,*}, on behalf of the Urea Cycle Disorders Consortium (UCDC) and the European registry and network for Intoxication type Metabolic Diseases (E-IMD) consortia study group

Synopsis

- Worldwide, transplantation for UCDs has increased and long term (>10yr) outcomes are >90% patient and transplant graft survival
- Optimal timing for neuro and motor development being studied but earlier transplant is favored
- Long term morbidities in both transplant and medical management need to be openly discussed
- Variability in surgical outcomes exist and should be reviewed with families and managing physicians

SOLVING PROBLEMS AND GIVING HOPE

Thomas E. Starzl, MD, PhD 1926-2017

