The Essentials

Welcome Session 2

Diagnosis and Treatment

Andrea Gropman, MD, St. Jude Research Hospital Sandesh CS Nagamani, MD, Baylor College of Medicine

Session 3: The Importance of Diet *Tuesday, September 16, 5-6:30 pm ET* Nicholas Ah Mew, MD and Erin MacLeod, PhD, RD, LD, Children's National Hospital

Session 4: Long-term Management Tuesday, November 11, 5-6:30 pm ET Laura Konczal, MD, University Hospitals Cleveland Medical Center

UREA CYCLE DISORDERS ECHO Diagnosis & Treatment

Session 2: Diagnosis and Treatment

UREA CYCLE DISORDERS ECHO Diagnosis & Treatment

Session 2 : Diagnosis and Treatment

Time	Content			
5 minutes	Introductions and housekeeping			
50 minutes	Didactic presentations: Sandesh CS Nagmani, MD,			
	Baylor College of Medicine and Andrea Gropman, MD,			
	St. Jude Research Hospital			
20 minutes	Case studies			
15 minutes	Group discussion			

UREA CYCLE DISORDERS ECHO Diagnosis & Treatment

The Essentials

- If possible, please make sure to keep your camera turned on
- ECHO is intended for educational purposes only
- Presenters cannot and will not provide medical advice
- To receive CME credit, please remain in the session and complete the evaluation form using the link that will be provided after the presentation

The Essentials

Welcome Introduce yourself in the chat

UREA CYCLE DISORDERS ECHO Diagnosis & Treatment

Urea Cycle Disorders: *Diagnosis and Treatment*

Sandesh CS Nagamani, MD

Professor, Vice Chair for Clinical Research Department of Molecular and Human Genetics Professor, Department of Medicine Baylor College of Medicine Texas Children's Hospital Houston, TX, USA

Andrea Gropman, MD

Director, Neurometabolic Translational Research Mark F. Tamer Endowed Chair in Pediatric Neurology St. Jude Children's Research Hospital Memphis TN, USA

DEPARTMENT OF MOLECULAR & HUMAN

Financial Disclosures (SN)

Active/recent research funding or collaborations	Sanofi*, Innovations in Data Exploration and Analysis* (Sanofi)				
Advisory Committee	Sanofi (2021), NextCure (2024)				

Financial Disclosures (AG)

Speaker	Baylor Miraca

UREA CYCLE DISORDERS ECHO Diagnosis & Treatment

Objectives

Diagnosis of UCDs

- ✓ Overview of UCDs
- ✓ Review clinical presentations of UCDs (clinical diagnosis)
- ✓ Review biochemical features (biochemical diagnosis)
- ✓ Review practical aspects of genetic testing (molecular diagnosis)

Treatment of UCDs

- ✓ General principles of acute hyperammonemia
- ✓ General principles of long-term treatment
- ✓ Emerging therapies

Objectives

Diagnosis of UCDs

✓ Overview of UCDs

- ✓ Review clinical presentations of UCDs (clinical diagnosis)
- ✓ Review biochemical features (biochemical diagnosis)
- ✓ Review practical aspects of genetic testing (molecular diagnosis)

Treatment of UCDs

- ✓ General principles of acute hyperammonemia
- ✓ General principles of long-term treatment
- ✓ Emerging therapies

All living things need nitrogen

Atmosphere

Proteins of all tissues

Nucleic acids

UREA CYCLE DISORDERS ECHO Diagnosis & Treatment

How is excess nitrogen excreted in animals?

UCDs: subtypes and prevalence	Re National Urea Cycle Disorders Foundation
UCDs	Estimated prevalence
Enzyme deficiencies	
NAGS deficiency	< 1 per 2,000,000
CPS1 deficiency	1 per 62,000
OTC deficiency	1 per 14,000-70,000
ASS1 deficiency (Citrullinemia type 1)	1 per 60,000
ASL deficiency (Argininosuccinic aciduria)	1 per 60,000
ARG1 deficiency (Argininemia)	1 per 353,000
Transporter defects	
Citrin deficiency (Citrullinemia type 2)	1 per 20,000 in Japan
HHH syndrome	Prevalence unknown
Secondary Urea Cycle Disorders	
Lysinuric protein intolerance, Carbonic anhydrase VA deficiend	cy Prevalence unknown
A CYCLE DISORDERS ECHO Diagnosis & Treatment	Andrea Gropman, MD, St. Jude Research Hos Sandesh CS Nagamani, MD, Baylor College of Medi

Objectives

Diagnosis of UCDs

- ✓ Overview of UCDs
- ✓ Review clinical presentations of UCDs (clinical diagnosis)
- ✓ Review biochemical features (biochemical diagnosis)
- ✓ Review practical aspects of genetic testing (molecular diagnosis)

Clinical diagnosis of UCDs

Severe defects in urea cycle

- Catastrophic presentation in first week of life with hyperammonemia
- May mimic "sepsis"
- Poor suck, vomiting, refusal of feeds, altered consciousness
- Rapid progression to encephalopathy and coma, fatal when untreated

Partial defects in urea cycle

- May present later, i.e., in infancy, childhood, or even adulthood
- Protein aversion, behavioral abnormalities, mental status changes, encephalopathy

Some UCDs may have unique features

- Acute liver failure in OTCD
- Chronic liver disease, hypertension in ASLD
- Spasticity and motor problems in ARG1D

Clinical features that should raise the possibility of UCDs in older children and adults

- Chronic, intermittent vomiting
- Headaches
- Lethargy
- Altered mental status
- Dietary protein avoidance
- Behavior change

- Nausea
- Confusion/Disorientation
- Anxiety
- Seizures
- Coma

Symptoms of hyperammonemia may mimic psychiatric illness (e.g., Bipolar Disorder or Schizophrenia) or drug/alcohol intoxication!

Neurological Presentations Across the Age Spectrum

Neonatal: Poor feeding, lethargy, hypotonia, seizures, coma

Infant/Toddler: Developmental delay, irritability Child: Episodic vomiting, behavioral issues, migraines

Adolescent: Encephalopathy, mood changes Adult: Psychosis, catatonia, confusion

UREA CYCLE DISORDERS ECHO Diagnosis & Treatment

Where are we in the talk?

Diagnosis of UCDs

- ✓ Overview of UCDs
- ✓ Review clinical presentations of UCDs (clinical diagnosis)
- ✓ Review biochemical features (biochemical diagnosis)
- ✓ Review practical aspects of genetic testing (molecular diagnosis)

Hyperammonemia is a hallmark of most UCDs

- Normal ammonia levels in plasma vary by age and laboratory
 - ✓ Ammonia above ULN, especially when associated with clinical features is abnormal
- Abnormal ammonia levels can be seen in:
 - ✓ Erroneous sample draw or processing
 - ✓ UCDs
 - \checkmark Liver failure and portosystemic shunts
 - ✓ Treatment with certain chemotherapeutic agents
 - ✓ Other IEM (e.g., organic acidemias, mitochondrial disorders)

What further biochemical work up is necessary

To confirm hyperammonemia

- ✓ Assess whether lab draw and analyses were done properly
- ✓ Consult metabolic genetics (others as indicated and available)
- \checkmark Consider repeat testing as indicated for diagnosis and monitoring
- To determine cause for hyperammonemia, consider:
 - ✓ Routine comprehensive metabolic panel liver functions, acid-base disturbances, hypoglycemia
 - ✓ Plasma amino acids glutamine, citrulline, arginine, others
 - \checkmark Acylcarnitine profile and urine organic acids
 - ✓ Others as indicated

Typical biochemical features that may help in biochemical diagnosis of UCDs

Project Project Project

Disorder	Ammonia	Glutamine	Citrulline	Arginine	Other classic biochemical features		
NAGSD	ŧ	t	ŧ				
CPS1D	t	+	¥				
OTCD	↑	t	¥		↑ orotic acid		
ASS1D	ŧ	ŧ	+ + +	ŧ			
ASLD	ŧ	ŧ	↑		↑ ASA		
ARG1D		+		+ + +			
ННН	+				♠ ornithine and homocitrulline		
Citrin deficiency	+	+	+	ŧ	threonine-serine the threonine-serine ratio		
Organic acidemia	t	t		Andrea	Acidosis, abnormal acyl carnitine profile		

UREA CYCLE DISORDERS ECHO Diagnosis & Treatment

Confirmation of diagnosis of UCDs

- For distal UCDs, typical biochemical features many be sufficient to make the diagnosis
- Confirmatory testing is often required for proximal UCDs and often performed for distal UCDs
 - \checkmark Enzymatic testing <u>NOT</u> widely available
 - ✓ Molecular genetic testing

Treatment of hyperammonemia is NOT to be delayed while further testing is underway to confirm a diagnosis

Where are we in the talk?

Diagnosis of UCDs

- ✓ Overview of UCDs
- ✓ Review clinical presentations of UCDs (clinical diagnosis)
- ✓ Review biochemical features (biochemical diagnosis)
- ✓ Review practical aspects of genetic testing (molecular diagnosis)

Practical Aspects of Genetic Testing & Genetic Counseling

Slides for this section of the talk were kindly provided by Darwin Argueta, MS, CGC, BCM

- What types of genetic tests are available?
- What test does one choose?
- What genetic testing laboratories offers testing for UCDs?

- What is the importance of pre-test counseling?
- What samples can be used for diagnostic clinical genetic testing?

Types of genetic testing

Methodology		Variations Detected	Utility in UCDs		
Cytogenetic	Karyotype	Extra/missing chromosomes, large chromosomal loss, gains, rearrangements	CMA might be useful in		
TestingChromosomalCNVs - SubmicrosMicroarraychromosomal loss		CNVs -Submicroscopic chromosomal chromosomal loss, gains, rearrangements	OTCD		
	Sanger Sequencing	Known single nucleotide variants in gene(s) of interest	Usually offered for a single genes, may be of help if familial mutation is known		
DNA Sequencing	Massively Parallel Sequencing-Based Panel Tests	single nucleotide variants and copy number variants in gene(s) of interest	Most commonly used test		
Exome Sequencing SN ass		SNVs in exons, primarily, for all genes associated with Mendelian phenotype	For multisystem complex		
	Genome SequencingSNVs in exons and introns for all genes associated with Mendelians phenotype; CNVs		disorders		

UREA CYCLE DISORDERS ECHO Diagnosis & Treatment

Finding an appropriate genetic test

- The Genetic Testing Registry (GTR) aims to enhance access to information about the availability, validity, and usefulness of genetic tests. <u>https://www.ncbi.nlm.nih.gov/gtr/</u>
- Concert Genetics allows you to search for and compare genetic tests from various labs: <u>https://app.concertgenetics.com/apps/search/#/</u>

	1.	12		1	STING Registr y	: GENETIC TE
Search and	Labs	Genes	Conditions/Phenotypes	Microbe Tests	Human Tests	All GTR
Search for test r		rch All GTR	Sea			

CONCERT

Search and Compare Tests

Search for test name, technique, more ...

Slide provided by Darwin Argueta, MS, CGC, BCM

UREA CYCLE DISORDERS ECHO Diagnosis & Treatment

Finding an appropriate genetic test

🎆 gtu 🖪 Product Lab's Test Code PUCD Comprehensive - NGS & Deletion/Duplication Analysis 2BU2G 5274 Baylor Genetics, LLC UCD and Hyperammonemia Panel by Massively Parallel Sequencing 2AVDG 2110 Baylor Genetics, LLC Hyperammonemia and Urea Cycle Disorder NGS Panel (Deletion/Duplication Only) 3QP3G Fulgent Genetics Hyperammonemia and Urea Cycle Disorder NGS Panel (Sequencing & Deletion/Duplication) 77DRG Fulgent Genetics Hyperammonemia and Urea Cycle Disorder NGS Panel (Sequencing Only) 77DHG Fulgent Genetics Invitae Hyperammonemia Panel 76SFG 06230 Invitae Corporation Invitae Urea Cycle Disorders Panel 4J6BG 06212 Invitae Corporation Invitae Urea Cycle Disorders Panel-Add-on Hereditary Orotic Aciduria Gene 5QJDG 06212-2 Invitae Corporation Invitae Urea Cycle Disorders Panel-Add-on Hyperammonemia Genes 4J7PG 06212-1 Invitae Corporation Urea Cycle Disorders 5R22G UREA-CYCLE-DISORDERS Knight Molecular Diagnostic Urea Cycle Disorders (NGS Panel and Copy Number Analysis) 76UUG NGS321 MNG Laboratories Hyperammonemia Panel 77HWG 10407 PreventionGenetics, part of Exact Sciences Urea Cycle Disorders Panel 6 JEPG 10273 PreventionGenetics, part of Exact Sciences

Hyperammonemia Gene Sequencing University of Minnesota Physicians Outreach Laboratory

7WWEG 1202598

Ordering a genetic test

Genetic Testing Laboratory Portals

ī

UREA CYCLE DISORDERS ECHO Diagnosis & Treatment

EMR-Integrated Order

Status:	Nor	mal	Standir	ng Fi	uture				
Priority:	Rou	tine				, 0 F	Routine	ST/	ΑT
Payment Type	Insu	rance	Patie	nt O	ther				
Primary Indication	Card	diolog	y: Aorto	pathy	Cardi	iology	: Arrhy	thmia	Ca
	Here	editar	y Breast	and (Ovarian	Cano	er (HE	BOC)	Lyr
	Poly	posis	(FAP)	Pros	tate Ca	ncer			
Is the patient affected of	r symp	otoma	tic?						
	Yes	No							
Patient has hematologic	al ma	lignar	ncy?						
	Yes No								
Family history of diseas	e?	•••							
	Yes	NO	h - f 0						
Has the patient had gen	jenetic testing before?								
Known family wariant in a game being tested for?									
Khown farmly variant in	Yes	No	ig leste						
Patient Ancestry	Unk	nown	Ashka	anazi	lowich	Asia	n Bl	ack/Afr	icar
r attent Anocatry	Nati		Perican	Paci	fic Islar	nder	Senha	ardic la	owis
	Nati	i s All	onoan	1 401	no ioidi		Coprie	and of	
Ship kit to patient?	No	Saliv	/a kit wi	th Fec	IEx retu	ırn lab	oel Sa	aliva k	it wi
	Buc	cal kit	with Fe	dEx r	eturn la	bel I	Buccal	kit wit	h U

On which Samples can genetic testing be ordered?

Buccal

Blood

Pretest counseling

National Urea Cycle Disorders Foundation

- What will the test inform us?
 - ✓ Confirm a diagnosis
 - \checkmark Mode of transmission and recurrence likelihood
 - \checkmark Potentially inform clinical course and severity
 - ✓ Potentially inform about clinical trial opportunities
- Genetic Information Nondiscrimination Act (GINA)
- Dispel myths about the disorder
- The patient and family members are not at fault
- Types of results (positive, negative, variant of uncertain significance)

Types of results

Where are we in the talk?

- Diagnosis of UCDs
 - ✓ Overview of UCDs
 - ✓ Review clinical presentations of UCDs (clinical diagnosis)
 - ✓ Review biochemical features (biochemical diagnosis)
 - ✓ Review practical aspects of genetic testing (molecular diagnosis)

Treatment of UCDs

- ✓ General principles of acute hyperammonemia
- \checkmark General principles of long-term treatment
- ✓ Emerging therapies

Diagnosis and Treatment of UCD: Don't miss these neurological clues or atypical presentations

Andrea Gropman, M.D., FAAP, FAMG, FANA, FAAN, FCNS St Jude Children's Research Hospital

Andrea Gropman, MD, St. Jude Research Hospital Sandesh CS Nagamani, MD, Baylor College of Medicine

Ammonia regulation in CNS

- Almost all the ammonia from the blood is converted instantly to glutamine
- The brain relies almost exclusively on astrocytic glutamine synthetase for the removal of excess ammonia
 - Brain lacks a urea cycle
 - Cerebral ammonia removal relies on formation of glutamine
 - Glutamine synthetase catalyzes glutamate and ammonia into glutamine an intracellular osmole
 - implicated in the astrocytic swelling

UCDs and the Brain — Why Neurology Matters

- Ammonia crosses the BBB \rightarrow astrocyte swelling, cerebral edema
 - Glutamine accumulation causes osmotic stress
 - Neuronal dysfunction even without coma
 - "The brain is the first organ to suffer and the last to recover in UCDs."

Andrea Gropman, MD, St. Jude Research Hospital Sandesh CS Nagamani, MD, Baylor College of Medicine

Etiology of neural injury in the proximal UCDs

- Hyperammonemic encephalopathy is associated with neural injury in UCDs
- Mechanism remains unclear
 - Energy deficit
 - · Glial cell dysfunction with osmotic disturbances
 - Metabolic disturbances: gln, glu, NAA
- Is all the injury due to HA and associated metabolites?
- What markers are predictive of treatment response and cognitive outcome?

Andrea Gropman, MD, St. Jude Research Hospital Sandesh CS Nagamani, MD, Baylor College of Medicine

Hyperammonemia (HA)

Newborns have different diagnostic levels than older children and generally higher levels are tolerated

As a general rule,

- < 500µmol/L = liver failure
- > 1000µmol/L = urea cycle defects

Adults

->100 also consider late onset metabolic disease

Hyperammonia

- Ammonia concentrations tend to be highest in urea cycle disorders
 - 300 to 1000 micromol/L [5.1 to 17 mcg/mL]
 - can be normal in urea cycle disorders when the patient is not acutely ill
 - Sometimes >1000 micromol/L (17 mcg/mL) in organic acidemias

Neurological Presentations Across the Age Spectrum

Neonatal: Poor feeding, lethargy, hypotonia, seizures, coma

Infant/Toddler: Developmental delay, irritability Child: Episodic vomiting, behavioral issues, migraines

Adolescent: Encephalopathy, mood changes Adult: Psychosis, catatonia, confusion

UREA CYCLE DISORDERS ECHO Diagnosis & Treatment

Clinical Vignette — Neonatal

 Baby A: Day 3 poor feeding, vomiting, lethargy –Ammonia 540 µmol/L, EEG burst suppression –Plasma amino acids –OTC deficiency (male)

Key Point: Ammonia >200 µmol/L in neonates is a red flag

Andrea Gropman, MD, St. Jude Research Hospital Sandesh CS Nagamani, MD, Baylor College of Medicine

Day 3: poor feeding, vomiting, lethargy in a neonate

Presentation:

- Poor feeding
- Vomiting
- Lethargy

Andrea Gropman, MD, St. Jude Research Hospital Sandesh CS Nagamani, MD, Baylor College of Medicine

Initial laboratory values

- Ammonia: 540 µmol/L (Normal <100 µmol/L)
- EEG: Burst suppression pattern

10.00	1 a h as a main a so with the the same of
1000	
10-10	The and a property of a part of the stranger of the stranger of
4 (40)	
5 4+13	Summer MAN museum
6 13-01	- And
7 842 54	-immunity Kinnen
8 14-02	- mountain mountain
100	- Min William
	- Marmun My Munner
100	- inder many many and an another
2 CA14	- immunity with the
13 541.49	- Munimum Mundum
14 562.04	- mount minut
5.00	N

Blood ammonia level 97micromole/l

Long term EEG in neonates

Interburst interval duration

Blood ammonia level 575 micromole/l and electrographic seizure

 Appeared to correlate with degree of hyperammonemia

 High plasma ammonia level associated with a shorter burst and longer background suppression

Andrea Gropman, MD, St. Jude Research Hospital Sandesh CS Nagamani, MD, Baylor College of Medicine

UREA CYCLE DISORDERS ECHO Diagnosis & Treatment

Blood ammonia level 807 micromole/L

Metabolic work up

- Plasma Amino Acids:
 - -Elevated glutamine

-low citrulline

- Urine Organic Acids: Unremarkable
- Orotic Acid: Elevated
- Diagnosis: Ornithine Transcarbamylase (OTC)
 Deficiency X-linked, affecting males

Clinical Vignette — Teenager

Emma, 14: Vomiting misdiagnosed as migraine

Mood swings, hallucinations, NH₃ = 220 μ mol/L Female heterozygous OTC

Key Point: Females can be symptomatic, crises often hormonal or infectious

UREA CYCLE DISORDERS ECHO Diagnosis & Treatment

Migraine or something else?

- 14-year-old girl with no significant medical history presented to the emergency department with recurrent vomiting, severe frontal headache, and confusion.
- These episodes had occurred intermittently over the past year, each time diagnosed as abdominal migraine or cyclic vomiting syndrome.
 - She had been treated with antiemetics and sumatriptan, with partial symptom relief

Migraine or something else

- On this presentation, her family noted increasing lethargy and word-finding difficulties
- There was no fever, diarrhea, or signs of infection
- Her vital signs were normal, but she appeared combative and psychotic, then drowsy and disoriented
- Neurological examination showed mild asterixis and slowed speech

Initial labs

- Ammonia: 238 µmol/L (normal < 40 µmol/L)
- LFTs: normal
- Electrolytes and glucose: within normal limits
- CT head: normal
- CSF studies: unremarkable
- Plasma amino acids showed elevated glutamine and low citrulline
- Urine orotic acid was elevated
- These findings prompted suspicion for a urea cycle disorder. —heterozygous pathogenic variant in the OTC gene: c.622G>A (p.Arg208GIn)

Brain imaging

MRI spectroscopy: snapshot of brain chemistry

Andrea Gropman, MD, St. Jude Research Hospital Sandesh CS Nagamani, MD, Baylor College of Medicine

Brain Imaging in UCDs

- MRI: Cortical swelling, insular/cingulate injury
- MRS: Elevated glutamine/glutamate peaks
- Chronic: Cerebral atrophy, white matter loss

Clinical Vignette – Adult Onset

- Mr. R, 28: Sudden confusion, hallucinations, disinhibition

 Initially misdiagnosed as psychosis
- NH₃ = 180 µmol/L, CPS1 deficiency
- Key Point: Family history may be silent in late-onset UCDs

Cerebral palsy or something else?

A 7-year-old male was referred for evaluation of progressive lower extremity stiffness, toe walking, and frequent falls

He had been diagnosed with spastic diplegic CP at age 3, based on hypertonia and motor delay

There was no history of prematurity, perinatal hypoxic events, or brain injury

He had met early developmental milestones but began to show progressive motor decline between ages 3 and 5, including increased tone, scissoring gait, and difficulty with toileting and ambulation

> Andrea Gropman, MD, St. Jude Research Hospital Sandesh CS Nagamani, MD, Baylor College of Medicine

Cerebral palsy or something else?

- MRI of the brain demonstrated symmetric T2 hyperintensities in the corticospinal tracts, particularly involving the periventricular white matter and posterior limbs of the internal capsule
 - magnetic resonance spectroscopy (MRS) revealed a unique elevation of a peak at 3.8 ppm, consistent with elevated guanidino compounds
- plasma amino acid panel was obtained, showing significantly elevated arginine levels
- Molecular genetic testing confirmed biallelic pathogenic variants in the ARG1 gene, confirming the diagnosis of arginase deficiency (ARG1related disorder).

Psychiatric Manifestations of UCDs

- Acute psychosis, catatonia, mania
- Often misdiagnosed as schizophrenia, bipolar disorder
- Always check ammonia in newonset psychiatric illness with encephalopathy

Treatment Overview

- Acute: Dialysis, scavengers (Na benzoate, phenylacetate), arginine
- Long-term: Protein restriction, essential AA formula, carglumic acid
- Gene-based: Liver transplant, AAV/mRNA therapy (in trials)
- Adjunct: Cognitive rehabilitation, cautious psychiatric medications

Management of Urea Cycle Disorders (UCDs) Acute vs. Chronic

Acute Hyperammonemic Crisis

Goals: Rapidly lower ammonia, prevent brain injury

- Hospital Admission (ICU if needed)
- Stop protein intake immediately
- Provide high-calorie glucose infusion (10%–20% dextrose ± lipids) to prevent catabolism
- Nitrogen scavenger therapy:
 - IV sodium benzoate
 - IV sodium phenylacetate
- L-Arginine or L-Citrulline (depending on enzyme defect)
- · Hemodialysis or CRRT if:
 - Ammonia > 500 µmol/L
 - Rapid deterioration, encephalopathy
- Monitor labs: Ammonia, electrolytes, liver/kidney function, plasma amino acids
- Neuroprotection: EEG, seizure monitoring, cooling if needed

Acute Treatment in Urea Cycle Disorders

Andrea Gropman, MD, St. Jude Research Hospital Sandesh CS Nagamani, MD, Baylor College of Medicine

Management of Urea Cycle Disorders (UCDs) Acute vs. Chronic

Chronic Long-Term Management

Goals: Prevent catabolism, control ammonia, optimize development

- Protein-restricted diet (customized to tolerance; guided by metabolic dietitian)
- Essential amino acid supplementation
- Chronic nitrogen scavengers (oral):
 - Sodium phenylbutyrate or glycerol phenylbutyrate (Ravicti[®])
- L-Arginine or L-Citrulline supplementation
- Frequent monitoring:
 - Plasma ammonia
 - Amino acids
 - Growth, neurodevelopment
- Family education & emergency protocol
- Liver transplantation (curative in severe/recurrent cases)

Summary — Pearls for Neurologists & Psychiatrists

- Always check ammonia in encephalopathy or psychiatric crisis
- Neurologic injury is cumulative and preventable
- Neuroimaging + metabolic profiling = essential
- Early diagnosis = better outcomes

The Essentials

Case Presentation

The Essentials

Upcoming UCD Event

Links in the chat

ADVANCEMENTS IN UNDERSTANDING: Global Perspective and Innovations In Urea Cycle Disorders SEPTEMBER 1 - 2, 2025, KYOTO, JAPAN

The Essentials

Thank You

Session 3: The Importance of Diet

Tuesday, September 16, 5-6:30 pm ET

Nicholas Ah Mew, MD Children's National Hospital Erin MacLeod, PhD, RD, LD, Children's National Hospital

Evaluation link / QR code

Andrea Gropman, MD, St. Jude Research Hospital Sandesh CS Nagamani, MD, Baylor College of Medicine